

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

docx2python

Extract docx headers, footers, text, footnotes, endnotes, properties, and images to a Python object.

Note to Users / Contributors

I will be doing very little coding in 2022. I will address “show stopper” bugs in docx2python, and I will accept pull requests if they are complete with

	an example *.docx file showing the problem addressed or missing feature

	a new test file with (Pytest) tests for the new fix or feature

README_DOCX_FILE_STRUCTURE.md may help if you’d like to extend docx2python.

Back to docx2python

For a summary of what’s new in docx2python 2, scroll down to New in docx2python Version 2

The code is an expansion/contraction of python-docx2txt [https://github.com/ankushshah89/python-docx2txt] (Copyright (c) 2015 Ankush Shah). The original code is mostly gone, but some of the bones may still be here.

shared features:

	extracts text from docx files

	extracts images from docx files

additions:

	extracts footnotes and endnotes

	converts bullets and numbered lists to ascii with indentation

	converts hyperlinks to link text

	retains some structure of the original file (more below)

	extracts document properties (creator, lastModifiedBy, etc.)

	inserts image placeholders in text ('----image1.jpg----')

	inserts plain text footnote and endnote references in text ('----footnote1----')

	(optionally) retains font size, font color, bold, italics, and underscore as html

	extract math equations

	extract user selections from checkboxes and dropdown menus

subtractions:

	no command-line interface

	will only work with Python 3.7+

Installation

pip install docx2python

Use

from docx2python import docx2python

extract docx content
docx2python('path/to/file.docx')

extract docx content, write images to image_directory
docx2python('path/to/file.docx', 'path/to/image_directory')

extract docx content, ignore images
docx2python('path/to/file.docx', extract_image=False)

extract docx content with basic font styles converted to html
docx2python('path/to/file.docx', html=True)

Note on html feature:

	supports <i>italic, bold, <u>underline, <s>strike, <sup>superscript, <sub>subscript, small caps, all caps, highlighted, font size, colored text.

	hyperlinks will always be exported as html (link text), even if html=False, because I couldn’t think of a more canonical representation.

	every tag open in a paragraph will be closed in that paragraph (and, where appropriate, reopened in the next paragraph). If two subsequenct paragraphs are bold, they will be returned as paragraph a, paragraph b. This is intentional to make each paragraph its own entity.

	if you specify html=True, &, > and < in your docx text will be encoded as &, > and <

Return Value

Function docx2python returns an object with several attributes.

header - contents of the docx headers in the return format described herein

footer - contents of the docx footers in the return format described herein

body - contents of the docx in the return format described herein

footnotes - contents of the docx in the return format described herein

endnotes - contents of the docx in the return format described herein

document - header + body + footer (read only)

text - all docx text as one string, similar to what you’d get from python-docx2txt

properties - docx property names mapped to values (e.g., {"lastModifiedBy": "Shay Hill"})

images - image names mapped to images in binary format. Write to filesystem with

for name, image in result.images.items():
 with open(name, 'wb') as image_destination:
 write(image_destination, image)

docx_reader - a DocxReader (see docx_reader.py) instance with several methods for extracting xml portions.

Return Format

Some structure will be maintained. Text will be returned in a nested list, with paragraphs always at depth 4 (i.e., output.body[i][j][k][l] will be a paragraph).

If your docx has no tables, output.body will appear as one a table with all content in one cell:

[# document
 [# table
 [# row
 [# cell
 "Paragraph 1",
 "Paragraph 2",
 "-- bulleted list",
 "-- continuing bulleted list",
 "1) numbered list",
 "2) continuing numbered list"
 " a) sublist",
 " i) sublist of sublist",
 "3) keeps track of indention levels",
 " a) resets sublist counters"
]
]
]
]

Table cells will appear as table cells. Text outside tables will appear as table cells.

A docx document can be tables within tables within tables. Docx2Python flattens most of this to more easily navigate
within the content.

Working with output

This package provides several documented helper functions in the docx2python.iterators module [https://docx2python.readthedocs.io/en/latest/docx2python.html#module-iterators]. Here are a few recipes possible with these functions:

from docx2python.iterators import enum_cells

def remove_empty_paragraphs(tables):
 for (i, j, k), cell in enum_cells(tables):
 tables[i][j][k] = [x for x in cell if x]

>>> tables = [[[['a', 'b'], ['a', '', 'd', '']]]]
>>> remove_empty_paragraphs(tables)
 [[[['a', 'b'], ['a', 'd']]]]

from docx2python.iterators import enum_at_depth

def html_map(tables) -> str:
 """Create an HTML map of document contents.

 Render this in a browser to visually search for data.

 :tables: value could come from, e.g.,
 * docx_to_text_output.document
 * docx_to_text_output.body
 """

 # prepend index tuple to each paragraph
 for (i, j, k, l), paragraph in enum_at_depth(tables, 4):
 tables[i][j][k][l] = " ".join([str((i, j, k, l)), paragraph])

 # wrap each paragraph in <pre> tags
 for (i, j, k), cell in enum_at_depth(tables, 3):
 tables[i][j][k] = "".join(["<pre>{x}</pre>".format(x) for x in cell])

 # wrap each cell in <td> tags
 for (i, j), row in enum_at_depth(tables, 2):
 tables[i][j] = "".join(["<td>{x}</td>".format(x) for x in row])

 # wrap each row in <tr> tags
 for (i,), table in enum_at_depth(tables, 1):
 tables[i] = "".join("<tr>{x}</tr>".format(x) for x in table)

 # wrap each table in <table> tags
 tables = "".join(['<table border="1">{x}</table>'.format(x) for x in tables])

 return ["<html><body>"] + tables + ["</body></html>"]

>>> tables = [[[['a', 'b'], ['a', 'd']]]]
>>> html_map(tables)
<html>
 <body>
 <table border="1">
 <tr>
 <td>
 '(0, 0, 0, 0) a'
 '(0, 0, 0, 1) b'
 </td>
 <td>
 '(0, 0, 1, 0) a'
 '(0, 0, 1, 1) d'
 </td>
 </tr>
 </table>
 </body>
</html>

See helper functions. [https://docx2python.readthedocs.io/en/latest/index.html]

Some fine print about checkboxes:

MS Word has checkboxes that can be checked any time, and others that can only be checked when the form is locked.
The previous print as. \u2610 (open checkbox) or \u2612 (crossed checkbox). Which this module, the latter will
too. I gave checkboxes a bailout value of ----checkbox failed---- if the xml doesn’t look like I expect it to,
because I don’t have several-thousand test files with checkboxes (as I did with most of the other form elements).
Checkboxes should work, but please let me know if you encounter any that do not.

New in docx2python Version 2

merge consecutive runs with identical formatting

MS Word will break up text runs arbitrarily, often in the middle of a word.

<w:r>
 <w:t>work to im</w:t>
</w:r>
<w:r>
 <w:t>prove docx2python</w:t>
</w:r>

This makes things like algorithmic search-and-replace problematic. Docx2python does not currently write docx files,
but I often use docx templates with placeholders (e.g., #CATEGORY_NAME#) then replace those placeholders with data.
This won’t work if your placeholders are broken up (e.g, #CAT, E, GORY_NAME#).

Docx2python v1 merges such runs together when exporting text. Docx2python v2 will merge such runs in the XML as a
pre-processing step. This will allow saving such “repaired” XML later on.

merge consecutive links with identical hrefs

MS Word will break up links, giving each link a different rId, even when these rIds point to the same address.

<w:hyperlink r:id="rId13"> # rID13 points to https://github.com/ShayHill/docx2python
 <w:r>
 <w:t>docx2py</w:t>
 </w:r>
</w:hyperlink>
<w:hyperlink r:id="rId14"> # rID14 ALSO points to https://github.com/ShayHill/docx2python
 <w:r>
 <w:t>thon</w:t>
 </w:r>
</w:hyperlink>

This is similar to the broken-up runs, but the cause is a little deeper in. Docx2python v1 makes a mess of these.

docx2py
thon

Docx2python v2 will merge such links together in the XML as a pre-processing step. As above, this will allow saving
such “repaired” XML later on.

correctly handle nested paragraphs

MS Word will nest paragraphs

<w:p>
	<w:r>
		<w:t>text</w:t>
	</w:r>
	<w:p> # paragraph inside a paragraph
		<w:r>
			<w:t>text</w:t>
		</w:r>
	</w:p>
	<w:r>
		<w:t>text</w:t>
	</w:r>
</w:p>

I haven’t been able to create such a paragraph, but I’ve found a few files that have them. Docx2pyhon v1 will omit
closing html tags when a new paragraph is opened before the old paragraph is closed.

outer par bold text

<i>This text is in nested par (not bold)</i>

outer par bold text

Docx2python v2 will correctly handle such cases, but this will require substantial internal changes to the way
docx2python opens and closes paragraphs.

outer par bold text

<i>This text is in nested par (not bold)</i>

outer par bold text

paragraph styles

The internal changes allow for easy access to paragraph styles (e.g., Heading 1). Docx2python v1 ignores these, even
with html=True. Docx2python v2 will capture paragraph styles.

<h1>h1 is a paragraph stylebold is a run style</h1>

export xml

To allow above-described light editing (e.g., search and replace), docx2python v2 will give the user access to

1. extracted xml files
2. the functions used to write these files to a docx

The user can only go so far with this. A docx file is built from folders full of xml files. None of these xml
files are self contained. But search and replace is enough to make document templates (documents with placeholders for
data), and that’s pretty useful in itself.

expose some intermediate functionality

Navigating through XML is straightforward with lxml. It is a separate step to take whatever you find and bring it
out of the XML. For instance, you may want to iterate over a document, looking for paragraphs with a particular
format, then pull the text out of those paragraphs. Docx2python v1 did not separate or expose “iter the document” and
“pull the content”. Docx2python v2 separates and exposes these steps. This will allow easier extension.

See the docx_reader.py module and simple examples in the utilities.py module.

see utilities.py for examples of major new features.

typical docx file format

To assist with reading the project documentation or extending docx2python.

There are four basic types of files:

1. _rels/.rels - A list of docx content files (e.g., ``document.xml``)

2. content files - files that contain the text displayed in the docx. (e.g., ``document.xml``, ``header1.xml``).
 These files reference non-content files (images and formatting specifications) through relId numbers, which are
 defined in content-file rels.

3. content-file rels - (e.g., ``document.xml.rels``) this is where relId numbers are defined. The relId numbers
 used in ``document.xml`` will be defined in ``document.xml.rels``.

4. display files - (e.g., ``numbering.xml``) that tell the content files how to display text. These are linked from
 the content files through content-file rels.

Docx file structure

+ _rels # named references to data (links, values, etc. for entire document)
 - .rels # map to locations of major files (e.g., document.xml)

+ customXml # all ignored by docx2python
 - item1.xml
 - item2.xml
 - item3.xml
 - itemProps1.xml
 - itemProps2.xml
 - itemProps2.xml
 _ _rels
 - item1.xml.rels
 - item2.xml.rels
 - item3.xml.rels

+ docProps
 - app.xml # ignored by docx2python
 - core.xml # author, modification date, etc.
 - custom.xml # ignored by docx2python

+ word # content of docx
 + _rels # images, numbering formats, etc. for content xml files
 - document.xml.rels
 - header1.xml.rels
 - header2.xml.rels
 - header3.xml.rels
 + media # folder holding all pictures attached in the docx file
 - image1.jpg
 - image2.jpg
 + theme # ignored by docx2python
 - theme1.xml
 - document.xml # main body text
 - header1.xml # header 1 content
 - footer1.xml
 - footnotes.xml
 - fontTable.xml # "long-hand" font descriptions. Ignored by docx2python
 - numbering.xml # required data to auto number paragraphs. doxc2python reads this
 - settings.xml # global file specifications. Ignored by docx2python
 - styles.xml # table styles, etc. Ignored by docx2python
 - webSettings.xml # ignored by docx2python

A *.docx file is just a zipped up file structure (the structure defined above). You can unzip a docx file, make changes, then zip it back up and everything will work (provided your changes are valid xml).

 —- version 1.25 - 200820 Added support for Table of Contents text

A docx table of contents is built like a set of hyperlinks, with each hyperlink element’s having an anchor (internal link) instead of an href (external link).

Previously any document with a Table of Contents would fail with KeyError: '{http://schemas.openxmlformats.org/officeDocument/2006/relationships}id' after failing to find an href. Now, docx2python will continue without warning if an href is not found in a hyperlink element. In an href is found, docx2python will print the href inside as before. Anchor (internal link) elements are meaningless outside the docx and are therefore ignored by docx2python.

—- version 1.26 - 201005 Continue (with bullet) when numbering-format lookup fails

Some documents created in Pages use a different indexing scheme to specify numbered-list formats and values. I cannot infer formats or values from such files without potentially changing existing behavior. The previous behavior in such cases was to fail with an IndexError. v1.26 will now replace any numbering format with a “bullet” (–) when the format or value cannot be inferred.

This will only happen where the program would previously have failed with an IndexError, so no previous behavior (which allowed the program to complete) has been altered.

—- version 1.27 - 201102 Continue when document properties are not found

docx2python(file).properties returns a dictionary of document properties (e.g., {’Author’: ‘Shay Hill’}). Google Docs (and perhaps others) do not store such properties. When document properties cannot be found, v1.27 will continue and return an empty dictionary for docx2python(file).properties.

This will only happen where the program would previously have failed with a KeyError, so no previous behavior (which allowed the program to complete) has been altered.

—- version 1.27.1 - 201115 Continue when image r:id is not found

A user found a docx imagedata element with a missing r:id element. The r:id number gives the location of an image filename. I presume this imagedata element is a vector graphic, which docx2python does not and will not support. This makes two out of three r:id lookup positions (hyperlink, image, and imagedata) for which users have found absent r:id. None so far have contained anything meaningful for text export (internal links in a previous case and vector graphics in this case). Now all r:id lookups take place within suppress(KeyId) context.

This will only happen where the program would previously have failed with a KeyError, so no previous behavior (which allowed the program to complete) has been altered.

—- version 2.0.0 - big changes

– Join run elements internally when docx2python cannot differentiate style.

If you’ve ever unzipped a docx file and searched for a word in your document, you probably didn’t find it. This is because MSWord splits continuous text into smaller runs if the runs differ in spell-check accuracy, revision time, and other characteristics docx2python does not extract. This makes it hard to, for instance, search and replace text in the xml. Docx2Python v2 reads through the xml and joins such runs as a pre-processing step. This greatly simplifies searching output for formatted text. This will allow search and replace and other light xml operations in the future. Runs with different formatting are not joined, even if html=False is set.

– Return text split into paragraphs (as previous version) or runs (new to Docx2Python v2).

The previous header, footer, body, footnotes, and endnotes attributes returned docx content as a 4-deep nested list of paragraph text. (paragraphs as strings): [[[["This is a paragraph"]]]]. These attributes are still available. New attributes header_runs, footer_runs, etc. return docx content as a 5-deep nested list of run strings (paragraphs as lists of strings): [[[[['This' , ' is a ', 'paragraph']]]]]

– No more nested HTML styles.

Docx2Python v1 would simplify html tags: bold text <i>bold-italic</i> more bold text. This makes an attractive export, but complicates searching / filtering for formatted text.

Docx2Python v2 will not nest html tags: bold text <i>bold-italic</i> more bold text.

_runs attributes will return ["bold text ", "<i>bold-italic</i>", " more bold text].

– More html run styles.

Now supports <i>italic, bold, <u>underline, <s>strike, <sup>superscript, <sub>subscript, small caps, all caps, highlighted, font size, colored text.

This is extensible. Styles can be added and removed. Note that the style change for font size has been updated from to to eliminate deprecated font elements. (Thank you, user raiyankamal, for pointing this out.)

– Slightly more structure is preserved (more empty sublists and strings).

Docx2Python v1 assumed a document was a series of tables and formatted output that way: [body[table[table_row[table_cell[paragraph

Simple docx files are structured this way, but there are elements (e.g., <w:footnotes>, <w:footnote>) that act like tables without being exactly tables. Docx2Python v2 treats any element 1-level above a paragraph as a table cell, any element 2-levels above a paragraph as a table row, etc. The upshot of this is that there will be more whitespace in your exports. This whitespace is potentially useful information, but you can easily filter it out if you don’t need it.

– No longer supports Python 3.4, 3.5, or 3.6

Now only supports Python 3.7+

– XML and other information from an unzipped docx file now available as a DocxReader instance.

Docx2Python v1 extracted xml from a zip file and passed it straight to formatting functions. Docx2Python v2 takes an intermediate step: hold the xml and inferred attributes of the input docx in DocxContext and File instances. These allow a view into the xml for users who are comfortable working that way. A user can now execute search&replace and other simple operations before extracting the text. Here’s an example:

def replace_root_text(root: etree._Element, old: str, new: str) -> None:
"""Replace :old: with :new: in all descendants of :root:

 :param root: an etree element presumably containing descendant text elements
 :param old: text to be replaced
 :param new: replacement text
 """
 for text_elem in (x for x in root.iter() if x.text):
 text_elem.text = (text_elem.text or "").replace(old, new)

def replace_docx_text(
 path_in: Union[Path, str],
 path_out: Union[Path, str],
 *replacements: Tuple[str, str],
 html: bool = False
) -> None:
"""Replace text in a docx file.

 :param path_in: path to input docx
 :param path_out: path to output docx with text replaced
 :param replacements: tuples of strings (a, b) replace a with b for each in docx.
 :param html: respect formatting (as far as docx2python can see formatting)
 """
 reader = docx2python(path_in, html=html).docx_reader
 for file in reader.content_files():
 root = file.root_element
 for replacement in replacements:
 replace_root_text(root, *replacement)
 reader.save(path_out)
 return

– Save altered xml

A user can extract the xml, alter it, and save the resulting docx. This will be simpler than accomplishing the same with just lxml, because

	consecutive runs with identical styles will be merged (no more attempting search and replace with “wo” “rds” “ brok” “en” “ in” “to” “multiple runs”.)

	some of the file structure will be available.

	Docx2Python will find all content files and return them as a list as DocxContext.content_files.

TODO: code an example for this functionality

– Soft line breaks are now exported as '\n'

Docx2Python v1 ignored soft line breaks. These are represented in the xml as <w:br/>. Docx2Python v2 exports these as '\n'.

– Now recognizes math text.

Equations in Word are made up internally of <w:m> elements. Previous versions of Docx2Python ignored these elements. These are now recognized.

Equations in Word’s Professional format will return garbage (a smattering of text elements inside an equation).

Equations in Word’s Inline format will return valid LaTeX (e.g., '\\int_{0}^{1}x').

– Now works with LibreOffice conversions

User shadowmimosa reported that docx files converted by LibreOffice from docx raised a CaretDepthError. This files now extract without error.

– New option paragraph_styles=True will append a paragraph style as the first run of each paragraph. These will often be “None”, but may be a “Header”, “Footnote” or similar. These can be used for factoring extracted paragraphs. See utilities.py for example usage.

– Replace & with & when exporting html styles

Docx2Python v1 did not replace &

—- version 2.0.1 - small import bug fix

—- version 2.0.2 - math equations now wrapped in <latex></latex>. Thank you, usr3

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

